Issue |
MATEC Web Conf.
Volume 125, 2017
21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 7 | |
Section | Communications | |
DOI | https://doi.org/10.1051/matecconf/201712503003 | |
Published online | 04 October 2017 |
Design and study of a microstrip slot antenna operating at 2.8/3.1/3.6/4.7/5.4 GHz
1 Electronic Engineering, Faculty of Engineering, Central Unit of the Valley of Cauca, Tuluá, Colombia.
2 Informatic Engineering, Faculty of Engineering, Central Unit of the Valley of Cauca, Tuluá, Colombia.
* Corresponding author: alozada@uceva.edu.co
A novel design of a multi band microstrip antenna is presented in this work. The double modified U slots planar patch antenna is designed, simulated and fabricated to operate at 2.8 GHz (between 2.794 to 2.846 GHz), at 3.1 GHz (between 3.145 to 3.196 GHz), at 3.6 GHz (between 3.56 to 3.3.644 GHz), at 4.7 GHz (between 4.684 to 4.772 GHz) and at 5.4 GHz (between 5.423 to 5.526 GHz) for WiMAX/WLAN applications. One of the main challenges was keeping a low profile and low cost substrate (1.2mm and FR4 respectively) with penta-band frequency response without scarifying these characteristics. Each resonant frequency is accomplished by modifying each U slot and patch radiator itself. Simulations had been conducted using HFSS software and measured parameters such as reflection coefficient (S11 parameter) was performed with a vector network analyzer. Measured results confirm simulated results that the antenna could work within mentioned frequencies. Parametric study was conducted in order to study the effect of slots variation over the design.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.