Issue |
MATEC Web Conf.
Volume 124, 2017
2017 6th International Conference on Transportation and Traffic Engineering (ICTTE 2017)
|
|
---|---|---|
Article Number | 06002 | |
Number of page(s) | 5 | |
Section | Traffic and Environment | |
DOI | https://doi.org/10.1051/matecconf/201712406002 | |
Published online | 29 September 2017 |
Estimates the Emission of Passenger Cars Based on the First Developed Driving Cycle in Nakhon Ratchasima Municipality, Thailand
1 Graduate Program in Environmental Pollution and Safety, Suranaree University of Technology, Nakhon Ratchasima, Thailand
2 School of Environmental Health, Suranaree University of Technology, Nakhon Ratchasima, Thailand
This study aims to estimate emissions of passenger cars traveled on the highways in Nakhon Ratchasima Municipality (NRM) based on recently developed driving cycles. A mobile phone application (SafeMate) was used to record speed-time of passenger car on the highways both weekday and weekend. The results showed that the driving cycles of the passenger cars on highway 224 and 304 were quite different. More traffic congestion on highway 224 impacted the average speeds, ranging from 10 to 34 km/h with longer idling time. The average speeds on highway 304 ranged from 49 to 69 km/h with more cruise time. The combined driving cycles on both highways showed the average speeds of 20-40 km/h depending upon the time of days. The traffic density on weekday was higher than the weekend. Peak-hour weekday showed lower traffic flow than off-peak hour which was the opposite of the weekend. Based on the derived driving cycles, the passenger car traveled on the highways in NRM emitted CO, NOx and HC approximately 90.7-129.8, 25.5-34.5 and 6.9-11.7 tons/year, respectively. The passenger cars were estimated to emit about 13,927.7-20,419.3 tons/year of carbon dioxide on the highways. The highway 2 accounted more of the emissions due to the traffic volume and coverage distance in NRM.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.