Issue |
MATEC Web Conf.
Volume 124, 2017
2017 6th International Conference on Transportation and Traffic Engineering (ICTTE 2017)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 6 | |
Section | Traffic Safety and Risk Assessment | |
DOI | https://doi.org/10.1051/matecconf/201712404003 | |
Published online | 29 September 2017 |
A Novel Approach for Identification and Ranking of Road Traffic Accident Hotspots
Centre for Transport Research, Universiti Teknologi Brunei, Brunei Darussalam
Road Traffic Accidents (RTA) are known to be one of the main causes of fatalities worldwide. One usef ul approach to improve road safety is through the identification of RT A hotspots along a road, so they can be prioritised and treated. This paper introduces an approach based on Geographical Information System (GI S) to identify and prioritise RTA hotspots along a road network using historical RTA data. One particular urban road in Brunei with a historically high rate of RT As, Jalan Gadong, was selected as a case study. Five years of historical RTA data were acquired from the relevant authorities and input into a GIS database. GI S analysis was then used to identify the spatial extension of the RT A hotspots. The RT A hotspots were ranked according to three different schemes: frequency, severity and socio-economic impact of RTAs. A composite ranking scheme was also developed to combine these schemes; this enabled the prioritisation and development of intervention and maintenance programmes of the identified RTA hotspots. A visualisation method of the RTA spatial distribution within each identified RTA hotspot was also developed to determine the most risky road stretches within each hotspot, which is important for treatment prioritisation when limited resources are available.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.