Issue |
MATEC Web Conf.
Volume 123, 2017
2017 The 2nd International Conference on Precision Machinery and Manufacturing Technology (ICPMMT 2017)
|
|
---|---|---|
Article Number | 00035 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/201712300035 | |
Published online | 21 September 2017 |
A design of toxic gas detecting security robot car based on wireless path-patrol
1 Department of Mechanical and Automation Engineering, Chung Chou University of Science and Technology, 6, Lane 2, Sec.3, Shanchiao Rd., Yuanlin, Changhua 51003, Taiwan, R.O.C.
2 Institute of Biomedical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan, R.O.C.
* e-mail: minchie.chiu@msa.hinet.net
Because a toxic gas detecting/monitoring system in a chemical plant is not movable, a gas detecting/monitoring system will be passive and the detecting range will also be constrained. This invention is an active multi-functional wireless patrol car that can substitute for humans that inspect a plant's security. In addition, to widen the monitoring vision within the environment, two motors used to rotate a wireless IPCAM with two axes are presented. Also, to control the robot car's movement, two axis motors used to drive the wheel of the robot car are also installed. Additionally, a toxic gas detector is linked to the microcontroller of the patrol car. The detected concentration of the gas will be fed back to the server pc. To enhance the robot car's patrolling duration, a movable electrical power unit in conjunction with a wireless module is also used. Consequently, this paper introduces a wireless path-patrol and toxic gas detecting security robot car that can assure a plant's security and protect workers when toxic gases are emitted.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.