Issue |
MATEC Web Conf.
Volume 114, 2017
2017 International Conference on Mechanical, Material and Aerospace Engineering (2MAE 2017)
|
|
---|---|---|
Article Number | 04017 | |
Number of page(s) | 8 | |
Section | Chapter 4: Interdisciplinary | |
DOI | https://doi.org/10.1051/matecconf/201711404017 | |
Published online | 10 July 2017 |
An adaptive filtering method based on EMD for X-ray pulsar navigation with uncertain measurement noise
1 College of Information Science and Engineering, Hunan University, Changsha 410082, China
2 College of Information Science and Engineering,Wuhan University of Science and Technology, Wuhan 430081, China
a Corresponding author: Z. W. Kang <hn_zwkang@126.com>
Affected by the unstable pulse radiation and the pulsar directional errors, the statistical characteristics of the pulsar measurement noise may vary with time slowly and cannot be accurately determined, which cause the filtering accuracy of the extended Kalman filter(EKF) in pulsar navigation positioning system decline sharply or even diverge. To solve this problem, an adaptive extended Kalman filtering algorithm based on the empirical mode decomposition(EMD) is proposed. In this method, the high frequency noise is separated from measurement information of pulsar by the method of EMD, and the noise variance can be estimated to update the parameters of EKF. The simulation results demonstrate that compared with conventional EKF, the proposed method can adaptively track the change of the measurement noise, and still keeps high estimation accuracy with unknown measurement noise, the positioning accuracy of the pulsar navigation is improved simultaneously.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.