Issue |
MATEC Web Conf.
Volume 111, 2017
Fluids and Chemical Engineering Conference (FluidsChE 2017)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 5 | |
Section | Advances in Fluids Flow and Mechanics | |
DOI | https://doi.org/10.1051/matecconf/201711101001 | |
Published online | 20 June 2017 |
Drag reduction by natural polymeric additives in PMDS microchannel: Effect of types of additives
Centre of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, Lebuhraya Tun Razak 26300 Kuantan, Pahang, Malaysia
* Corresponding author: fionalingwm@gmail.com
Drag reduction technology was used in medical applications to enhance the blood flow in semiclogged blood streams which can be an alternative treatment for atherosclerosis. In this present study, natural polymeric drag reducing additives (DRA) was introduced to replace synthetic polymer which has the possibility of bringing side effects to human health. Three different sources, namely okra, aloe vera and hibiscus were utilized to extract the natural polymeric additives which were then tested in custom made microchannel simulating human heart blood vessels. The performance of different types of additives was evaluated using pressure measurements. The maximum drag reduction up to 63.48% is achieved using 300 ppm of hibiscus mucilage at operating pressure of 50 mbar. In this present work, hibiscus showed the best drag reduction performance, giving the highest %FI in most of the cases. This experimental results proved that these natural polymeric additives could be utilized as DRA in enhancing the blood flow in semiclogged blood streams.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.