Issue |
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
|
|
---|---|---|
Article Number | 07004 | |
Number of page(s) | 9 | |
Section | Geotechnic, Geoenvironment and Geomatic Engineering | |
DOI | https://doi.org/10.1051/matecconf/201710307004 | |
Published online | 05 April 2017 |
The Behaviour of Remolded Batu Pahat Soft Clay with Different OCR Values under Cyclic Loading
Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia
* Corresponding author: alvin@uthm.edu.my
The Batu Pahat Soft Clay, (BPSC) of Universiti Tun Hussein Onn Malaysia, (UTHM) were low in shear strength, bearing capacity, and suffer large settlements when subjected to loading. They undergo varies of dynamic cyclic loadings during their design lifetime and the response was typically more complex, requiring engineers to investigate the dynamic behaviour of soils thoroughly in the laboratory. The objectives of this research were to simulate remolded Batu Pahat Soft Clay (RBPSC) samples with different σv’, to study the dynamic shear modulus, G and damping ratio, D of (RBPSC) under cyclic loading with different f, OCRs, σv’ and σc’ and to analyses the correlation between G and D of the (RBPSC) with the OCR values under cyclic loading. As result, the 100 × 50 mm of remoulded samples are succeed simulated by using large strain consolidation apparatus of 50, 80 and 100 kPa of pre consolidation stress, contain moisture ranging within 42 to 55%. The series of remolded consolidated undrained dynamic cyclic triaxial test were ran under OCR of 1, 2, 3.85 and 4. Hence, it could be concluded that the G decreased when increasing of f and OCRs subjected to increasing axial strain while the G corresponding to each σv’ increases slightly as the σv’ becomes higher. The D shows minor increased when increasing of the f, OCRs and σv’ when subjected to increasing axial strain. Thus, input of parameter G and D can be review as technical values to key design structure on top of soil layer.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.