Issue |
MATEC Web Conf.
Volume 100, 2017
13th Global Congress on Manufacturing and Management (GCMM 2016)
|
|
---|---|---|
Article Number | 04015 | |
Number of page(s) | 7 | |
Section | Part 4: Equipment manufacturing and New materials | |
DOI | https://doi.org/10.1051/matecconf/201710004015 | |
Published online | 08 March 2017 |
An optimum method for latticed shells based on concept of the compression line
Institute of Steel and Spatial Structures in School of Civil Engineering and Architecture, Henan University, Kaifeng 475004 China
* Corresponding author: dwf@henu.edu.cn
To improve the load-carrying capacity latticed shells, an innovative optimum method based on the concept of compression line is proposed in this paper. The basic principle of this method is using the character without moment in compression line. The arc line which forms the contour line of sphere and latticed shell structures is substituted by compression line in this method. Then the latticed shell structures are in the state of compression, and the influence of bending stress reduces greatly. As a result, the load-carrying capacity of the latticed shell structure is increased. Through the geometrical nonlinear analysis of a sunflower-patterned single-layer latticed shell structure with a span of 48m, it is found that the load-carrying capacity of the single-layer latticed shell structure can be improved by 5.48%. Furthermore, the results of 84 structural analyses of single-layer or double-layer sphere and cylinder latticed shell structures show that the optimum method is right and effective. And especially, it is applicable to single-layer latticed shell structure with rise-span ratio 1/5 with the max improvement 6.4% of load-carrying capacity.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.