Issue |
MATEC Web Conf.
Volume 95, 2017
2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016)
|
|
---|---|---|
Article Number | 07015 | |
Number of page(s) | 4 | |
Section | Mechanical Design-Manufacture and Automation | |
DOI | https://doi.org/10.1051/matecconf/20179507015 | |
Published online | 09 February 2017 |
Simulation of the Carton Erection for the Rubber Glove Packing Machine Using Finite Element Method
Department of Mechanical Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakorn Pathom, 73170, Thailand
Laboratory of Computer Mechanics for Design (LCMD), Department of Mechanical Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakorn Pathom, 73170, Thailand
The rubber glove packing machine had been designed an important function which worked with folding carton. Each folded paper carton would be pulled to be erected by vacuum cups. Some carton could not completely form because of an unsuitable design of the erector. Cartons were collapsed or buckling while pulled by vacuum cups that cause to sudden stop the packing process and affect to number and cost of rubber glove production. This research aimed to use simulation method to erect the folded carton. Finite element (FE) model of the rubber glove carton was created with shell elements. The orthotropic material properties were employed to specify FE model for analysis erection behavior of the folding carton. Vacuum cups number, positions and rotation points were simulated until obtained a good situation of the folding carton erector. Subsequently, finite element analysis results will be used to fabricate erector of the rubber glove packing machine in a further work.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.