Issue |
MATEC Web Conf.
Volume 90, 2017
The 2nd International Conference on Automotive Innovation and Green Vehicle (AiGEV 2016)
|
|
---|---|---|
Article Number | 01055 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/matecconf/20179001055 | |
Published online | 20 December 2016 |
Methods of preparing internal combustion engine cylinder bore surfaces for frictional improvement
1 Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
2 Automotive Engineering Centre, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
* Corresponding author: deva@ump.edu.my
Frictional losses piston to cylinder bore contact is a major sources of mechanical losses in an internal combustion engine (ICE). Traditional plateau honing produces a relatively rough cylinder bore surface with many valleys for oil retention and plateau surfaces that are usually has micro roughness's that causes mechanical friction to act as a bearing surface. A smooth polished dimpled surface is more ideal to achieve low friction and wear in an ICE. Alternative methods to create a smooth dimpled surface on a hypereutectic aluminum ADC12 substrate for frictional improvements are evaluated in this study using an oscillating wear tester (OWT). The methods include casting in the dimples in the aluminum matrix, sandblasting as well as embossing the pits. The texture samples are evaluated by examining the surface properties, measuring frictional coefficient as well as wear characteristics. It was found that the samples embossed with #320 grit sandpaper and sandblasted with #240 sieve sand samples had a reduced coefficient of friction (μ) of 23% at low sliding speeds before hydrodynamic lubrication mode and 6.9% in the fully hydrodynamic lubrication region.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.