Issue |
MATEC Web Conf.
Volume 86, 2016
5th International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education”
|
|
---|---|---|
Article Number | 04006 | |
Number of page(s) | 7 | |
Section | 4 Building materials and Technologies | |
DOI | https://doi.org/10.1051/matecconf/20168604006 | |
Published online | 28 November 2016 |
Thermal oxidative degradation of wood modified with aminophenylborates
Moscow State University of Civil Engineering, Department of General Chemistry, Yaroslavskoye sh. 26, 129337 Moscow, Russia
* Corresponding author: StepinaIV@mgsu.ru
Comparative thermal analysis in the presence of oxygen was carried out for samples of native pine wood and wood samples modified with aminophenylborates. Significant decrease in the amount of heat released during thermal decomposition of the modified samples was established, which is due to the increase of carbonaceous residues on the surface. Reduction of heat release during decomposition of the modified samples may be explained by the lower yield of combustible volatile products as well as by thin film of boron oxide, formed on the surface of the modified wood, that partially reflects heat flow. Produced upon the modifier decomposition water vapor and inert nitrogen oxides dilute gaseous mixture near the wood surface and isolate it from oxygen. This enhances fire-resistance of wood modified with mono- and diethanolamine(N→B)phenylborates. Hydroxyl group at the sixth carbon atom of the glucopyranose ring of cellulose participates in reactions of cellulose modification, which prevents formation of flammable levoglucosan and, consequently, improves the fire-resistance of the modified wood.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.