Issue |
MATEC Web Conf.
Volume 83, 2016
CSNDD 2016 - International Conference on Structural Nonlinear Dynamics and Diagnosis
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 4 | |
Section | Nonlinear dynamics in MEMS, NEMS and AFM | |
DOI | https://doi.org/10.1051/matecconf/20168304002 | |
Published online | 16 November 2016 |
Modeling and parametric analysis of a piezoelectric flexoelectric nanoactuator
Applied Mechanics and Systems Research Laboratory, Tunisia Polytechnic School, BP 743, La Marsa 2078, University of Carthage, Tunisia.
a e-mail: sourour.baroudi@gmail.com
With the development of nanotechnology, nanoactuators have recently re-stimulated a surge of scientific interests in research communities. One of the interesting transduction mechanisms that showed high efficiency at the nanoscale was flexoelectricity. In fact, the flexoelectric effect in dielectric solids couples polarization and strain gradient, rather than polarization and strain for piezoelectricity, to convert mechanical stimulus into electricity and vice cersa. The objective of the current work is to develop a complete comprehensive electromechanical model of a nanobeam whose for piezoelectrically-actuated nanocantilever sensor in which both the flexoelectricity and piezoelectricity effects will be tzken into consideration. Starting from the enthalpy density function, the Hamilton’s principle is applied to drive the governing coupled equations with appropriate boundary conditions. Then, we investigate the free vibration of the mechanism by formulating the eigenvalue problem associated with the coupled partial differential equations. Using the Galerkin procedure we develop both the static and dynamic of our structure. The results show that a certain aspect ratio flexoelectric effect significantly increases the performance of the nanoactuator.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.