Issue |
MATEC Web Conf.
Volume 79, 2016
VII Scientific Conference with International Participation “Information-Measuring Equipment and Technologies” (IME&T 2016)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/20167901025 | |
Published online | 11 October 2016 |
Comparison of the Influence of “Solvent/Non-Solvent” Treatment for the Attachment of Signal Molecules on the Structure of Electrospun PCL and PLLA Biodegradable Scaffolds
National Research Tomsk Polytechnic University, 634050, Tomsk, Russia
* Corresponding author: semgor93@gmail.com
Electrospun biodegradable scaffolds (matrixes) made of poly(ε-caprolactone) (PCL) and poly(L-lactic acid) (PLLA) are three-dimensional fibrous structures that are commonly used in regenerative medicine and drug delivery systems. Modification of such structures allows manipulating with biological and immune response. Previously, our team suggested a number of surface modification strategies for thin films made of PLLA. One of the proposed strategies are based on treatment of the material with “solvent/non-solvent” mixture that allows absorbing biologically active molecules or linkers on the surface of the sample. The aim of this work was to compare the influence of “solvent/non-solvent” treatment on the structure and crystallinity of the elecrospun biodegradable PCL and PLLA scaffolds. For that purpose, original PCL and PLLA scaffolds were treated with mixture of toluene and ethanol in different proportions. Morphology of the obtained samples was studied using scanning electron microscopy. It was shown that “solvent/non-solvent” treatment doesn’t lead to changes in scaffolds morphology such as gluing or cutting of the matrix fibers. By means of X-ray diffraction analysis it was shown that treatment of the samples with selected mixtures doesn’t change material crystallinity. Thus, it was demonstrated that proposed composition of the “solvent/nonsolvent” mixture can be used for the modification of electrospun PCL and PLLA scaffolds.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.