Issue |
MATEC Web Conf.
Volume 77, 2016
2016 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016)
|
|
---|---|---|
Article Number | 08006 | |
Number of page(s) | 5 | |
Section | Materials Analysis and Study | |
DOI | https://doi.org/10.1051/matecconf/20167708006 | |
Published online | 03 October 2016 |
Effects of Dental Implant-abutment Interfaces on the Reliability of Implant Systems
1 Shenzhen Institutes of Advanced Technology, Shenzhen, China, 518055
2 College of Mechanical Engineering, Shanghai University of Engineering Science, Shanghai, China, 201620
3 Foshan Angels Biotechnology Co., Ltd, Foshan, China, 528000
In this paper, by analyzing the effects of two different kinds of implant-abutment connection interfaces under the same working condition on the mechanical and fatigue performances of the implant system as well as on the surrounding bones, we intend to study such effects on the reliability of the implants and provide a theoretical basis for the design and clinical application of dental implant systems. For the purpose, we adopt a 3-D modeling method to establish the model, and use FEA (finite element analysis) to carry out static mechanic and fatigue analysis on the implant system and its surrounding bones; then we make the two implant systems, and carry out fatigue tests on a dynamic fatigue testing machine to verify the FEA results. After comparing the results from the two different systems, we find that the stress distribution and fatigue safety factor of the system which has deeper axial matching of the taper connection are better than those of the other system, that is to say, between the two major elements of a implant system, the axial length of the connecting taper and the size of the hexagon, the former has greater effects than the latter. When the axial matching is deeper, the stress distribution of the implant system will be better, the fatigue safety factor will be higher, and the implant system will be more reliable.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.