Issue |
MATEC Web Conf.
Volume 77, 2016
2016 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016)
|
|
---|---|---|
Article Number | 06012 | |
Number of page(s) | 5 | |
Section | Energy Utilization and Environmental Monitoring | |
DOI | https://doi.org/10.1051/matecconf/20167706012 | |
Published online | 03 October 2016 |
Atmospheric icing status and type of southwest China networks
1 Electric Power Research Institute of State Grid Sichuan Electric Power Company, 610072 Chengdu, China
2 Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen, China
Transmission line disconnection, tower collapse and insulator flashover caused by icing seriously threaten power system security. Ice type and state of transmission lines, which vary a lot with terrain and climate, in typical areas such as Daqing-ridge, Yak Mountain and Erlang Mountain in Sichuan Province in South China were investigated in this paper. It is shown that mixed-phase ice with obvious layered structure, low density, strong adhesive force and windward-side growth is the main type of ice threatening the security of transmission lines and insulators. There is more ice on the ends of insulators than other areas in severe cases, where all sheds of the insulator is bridged by ice. Besides, temperature, humidity and precipitation intensity are main factors influencing the icing process. As a result, terrain and climate play a leading role in determination of icing type and severity.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.