Issue |
MATEC Web Conf.
Volume 75, 2016
2016 International Conference on Measurement Instrumentation and Electronics (ICMIE 2016)
|
|
---|---|---|
Article Number | 06005 | |
Number of page(s) | 5 | |
Section | Network Technology | |
DOI | https://doi.org/10.1051/matecconf/20167506005 | |
Published online | 01 September 2016 |
Titan TTCN-3 Based Test Framework for Resource Constrained Systems
Institute of Reliable Communication and Electronics of Offenburg University of Applied Sciences, Offenburg, 77652, Germany
a Corresponding author: artem.yushev@hs-offenburg.de
Wireless communication systems more and more become part of our daily live. Especially with the Internet of Things (IoT) the overall connectivity increases rapidly since everyday objects become part of the global network. For this purpose several new wireless protocols have arisen, whereas 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) can be seen as one of the most important protocols within this sector. Originally designed on top of the IEEE802.15.4 standard it is a subject to various adaptions that will allow to use 6LoWPAN over different technologies; e.g. DECT Ultra Low Energy (ULE). Although this high connectivity offers a lot of new possibilities, there are several requirements and pitfalls coming along with such new systems. With an increasing number of connected devices the interoperability between different providers is one of the biggest challenges, which makes it necessary to verify the functionality and stability of the devices and the network. Therefore testing becomes one of the key components that decides on success or failure of such a system. Although there are several protocol implementations commonly available; e.g., for IoT based systems, there is still a lack of according tools and environments as well as for functional and conformance testing. This article describes the architecture and functioning of the proposed test framework based on Testing and Test Control Notation Version 3 (TTCN-3) for 6LoWPAN over ULE networks.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.