Issue |
MATEC Web Conf.
Volume 74, 2016
The 3rd International Conference on Mechanical Engineering Research (ICMER 2015)
|
|
---|---|---|
Article Number | 00032 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/20167400032 | |
Published online | 29 August 2016 |
Thermal Fatigue of Die-Casting Dies: An Overview
1 Faculty of Mechanical Engineering, University Malaysia Pahang 26600 Pekan, Pahang, Malaysia
2 Baghdad-Institute, Foundation of Technical Education, 10001 Baghdad, Iraq
a Email: h.shamary@gmail.com
Coupled studies by experimental and numerical simulations are necessary for an increased understanding of the material behaviour as related to the interaction between the thermal and mechanical conditions. This paper focus on the mechanisms of thermal fatigue in the failure of dies and cores used in the die casting of aluminum alloys. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. Samples of various types of H13 steel were compared with a standard H13 steel by testing under identical thermal fatigue cycles. To determine the thermal constraint developed in the sample during the test, a finite difference technique was used to obtain the temperature distribution, based on temperature measurements at the boundaries. The resulting stresses and strains were computed, and the strain calculated at the edge or weakest point of the sample was used to correlate the number of cycles to crack initiation. As the strain at the edge increased, the number of cycles to failure decreased. The influence of various factors on thermal fatigue behavior was studied including austenitizing temperature, surface condition, stress relieving, casting, vacuum melting, and resulfurization. The thermal fatigue resistance improved as the austenitizing temperature increased from 1750 to 2050ºF.
Key words: Aluminium alloys / air entrapment / die molten metal / materials
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.