Issue |
MATEC Web Conf.
Volume 72, 2016
Heat and Mass Transfer in the System of Thermal Modes of Energy – Technical and Technological Equipment (HMTTSC-2016)
|
|
---|---|---|
Article Number | 01077 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/matecconf/20167201077 | |
Published online | 09 August 2016 |
The Opportunity Analyses of Using Thermosyphons in Cooling Systems of Power Transformers on Thermal Stations
1 National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
2 Tomsk State Architecture and Civil Engineering, 634003 Tomsk, Russia
* Corresponding author: nurpeiis_atlant@mail.ru
The opportunity analyses of using the thermosyphons as the main elements in the systems of thermal regime supplying has been conducted under the conditions of their usage in power transformers on thermal stations. Mathematical modeling of jointly proceeding processes of conduction, forced convection and phase transitions (evaporation and condensation) of coolant in the thermosyphon of rectangular cross section has been carried out. The problem of conjugated conductive-convective heat transfer was formulated in dimensionless variables “vorticity/stream function/temperature” and solved by finite difference method. The effect of the heat flux density supplied to the bottom cover of the thermosyphon from a transformer tank on the temperature drop in the steam channel was shown based on the analysis of numerical simulation results (temperature fields and velocities of steam). The parameters of energy-saturated equipment of thermal stations were found to be controlled by an intensification of heat removal from the top cover surface of the thermosyphon.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.