Issue |
MATEC Web Conf.
Volume 68, 2016
2016 The 3rd International Conference on Industrial Engineering and Applications (ICIEA 2016)
|
|
---|---|---|
Article Number | 18006 | |
Number of page(s) | 6 | |
Section | Computer Science and Application | |
DOI | https://doi.org/10.1051/matecconf/20166818006 | |
Published online | 01 August 2016 |
An Efficient Virtual Trachea Deformation Model
Nanjing Research Institute of Electronics Engineering, 210007, Nanjing, China
Science and Technology on Information Systems Engineering Laboratory, 210007, Nanjing, China
a Corresponding author: cuitong_seu@sina.cn
In this paper, we present a virtual tactile model with the physically based skeleton to simulate force and deformation between a rigid tool and the soft organ. When the virtual trachea is handled, a skeleton model suitable for interactive environments is established, which consists of ligament layers, cartilage rings and muscular bars. In this skeleton, the contact force goes through the ligament layer, and produces the load effects of the joints , which are connecting the ligament layer and cartilage rings. Due to the nonlinear shape deformation inside the local neighbourhood of a contact region, the RBF method is applied to modify the result of linear global shape deformation by adding the nonlinear effect inside. Users are able to handle the virtual trachea, and the results from the examples with the mechanical properties of the human trachea are given to demonstrate the effectiveness of the approach.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.