Issue |
MATEC Web Conf.
Volume 68, 2016
2016 The 3rd International Conference on Industrial Engineering and Applications (ICIEA 2016)
|
|
---|---|---|
Article Number | 14010 | |
Number of page(s) | 5 | |
Section | Environment and Energy | |
DOI | https://doi.org/10.1051/matecconf/20166814010 | |
Published online | 01 August 2016 |
Statistically Filtering Data for Operational Modal Analysis under Ambient Vibration in Structural Health Monitoring Systems
Beijing Municipal Institute of Labour Protection, 55 Taoranting Road, Xicheng District, Beijing 100054, China
Operational modal analysis (OMA) is prevalent in large structure modal identification for that it asks for output measurements only. To guarantee identification accuracy, theoretically, OMA data need to be a random process of Gaussian white noise (GWN). Although numerous OMA applications are found in practice, few have particularly discussed the data distribution and to what extent it would blur the modal judgement. This paper presents a method to sieve segments mostly obeying the GWN distribution out of a recording. With a windowing technique, the data segments are evaluated by the modified Kurtosis value. The process has been demonstrated on the monitoring data of two case study structures: one is a laboratory truss bridge excited by artificial forces, the other is a real cable-stayed bridge subject to environmental loads. The results show that weak randomness data may result in false peaks that would possibly mislead the non-parametric modal identification, such as using the Frequency Domain Decomposition method. To overcome, cares on selecting the optimal segment shall be exercised. The proposed method is verified effective to find the most suitable data for modal identification of structural health monitoring systems.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.