Issue |
MATEC Web of Conferences
Volume 56, 2016
2016 8th International Conference on Computer and Automation Engineering (ICCAE 2016)
|
|
---|---|---|
Article Number | 05009 | |
Number of page(s) | 6 | |
Section | Modern Communication Technology and Applications | |
DOI | https://doi.org/10.1051/matecconf/20165605009 | |
Published online | 26 April 2016 |
Jammer Suppression in DS-CDMA Communications using Parafac-based Blind Separation
1 Nanjing University of Aeronautics & Astronautics, Nanjing, China
2 Nangjing Telecommunication Technology Institute, Nanjing, China
In this paper we propose to apply parafac-based source separation techniques for jammer suppression in direct spread spectrum communication systems. The jammer excision is formulated as an optimization problem and a new algorithm is presented which is based on the parafac tri-iterative least square algorithm. By jointly diagonalizing the time delay correlation matrix of the observed signals and using the new proposed method, a better solution is achieved. The proposed algorithm can successfully separate communication signals and jamming signals. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm doesn’t require whitening processing. Moreover our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of antennas.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.