Issue |
MATEC Web of Conferences
Volume 56, 2016
2016 8th International Conference on Computer and Automation Engineering (ICCAE 2016)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 5 | |
Section | Image Processing and Application | |
DOI | https://doi.org/10.1051/matecconf/20165602002 | |
Published online | 26 April 2016 |
Possibilistic Clustering Algorithm Incorporating Grey-Level Histogram and Spatial Information for Image Segmentation
Mobilelink, UESTC, Chengdu, China
Image segmentation is a process of segmenting an image into non-intersecting regions containing homogeneous pixels that are inhomogeneous with those in other adjacent regions. In this paper, a possibilistic clustering algorithm incorporating grey-level histogram and spatial information (PCA_HS) for image segmentation is proposed. The grey-level histogram speeds up the algorithm and the spatial information enhances its robustness to noise and outliers. To assess the proposed algorithm, four widely used validity indexes are computed and discussed. As the experimental quantitative and qualitative results on real images with and without noise show, PCA_HS can preserve the homogeneity and integrality of the regions and hence is more effective and efficient than traditional PCA.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.