Issue |
MATEC Web of Conferences
Volume 56, 2016
2016 8th International Conference on Computer and Automation Engineering (ICCAE 2016)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 5 | |
Section | Computer and Information technologies | |
DOI | https://doi.org/10.1051/matecconf/20165601002 | |
Published online | 26 April 2016 |
Efficient Multi-keyword Ranked Search over Outsourced Cloud Data based on Homomorphic Encryption
1 University of Electronic Science and Technology of China, 611731 Chengdu, China
2 Science and Technology on Communication Security Laboratory, 610041 Chengdu, China
With the development of cloud computing, more and more data owners are motivated to outsource their data to the cloud server for great flexibility and less saving expenditure. Because the security of outsourced data must be guaranteed, some encryption methods should be used which obsoletes traditional data utilization based on plaintext, e.g. keyword search. To solve the search of encrypted data, some schemes were proposed to solve the search of encrypted data, e.g. top-k single or multiple keywords retrieval. However, the efficiency of these proposed schemes is not high enough to be impractical in the cloud computing. In this paper, we propose a new scheme based on homomorphic encryption to solve this challenging problem of privacy-preserving efficient multi-keyword ranked search over outsourced cloud data. In our scheme, the inner product is adopted to measure the relevance scores and the technique of relevance feedback is used to reflect the search preference of the data users. Security analysis shows that the proposed scheme can meet strict privacy requirements for such a secure cloud data utilization system. Performance evaluation demonstrates that the proposed scheme can achieve low overhead on both computation and communication.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.