Issue |
MATEC Web of Conferences
Volume 54, 2016
2016 7th International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2016)
|
|
---|---|---|
Article Number | 09002 | |
Number of page(s) | 7 | |
Section | Satellite and Communication Engineering | |
DOI | https://doi.org/10.1051/matecconf/20165409002 | |
Published online | 22 April 2016 |
Optimal Rendezvous Guidance Using Linear Quadratic Control
Korea Advanced Institute Science and Technology, Daejeon, Rep. of. Korea
This paper handles with an energy optimal guidance law for rendezvous mission, based on linear quadratic control (LQC) problem. Rendezvous of two satellites are expressed by a nonlinear relative orbit dynamic model. The LQC problem minimizes integral of control input quadratic term with given final time and terminal states. A linear relative orbit dynamic, also called as the Clohessy-Wiltshire equation, is utilized as governing equation for optimal rendezvous guidance law. It is proven that renewing costates like an initial time is identical to propagating it from initial time to current time. Thus optimal guidance law can be formulated in state feedback form. To enhance computation efficiency, this work uses Taylor series expansion for the exponential of system matrix. The proposed algorithm is verified through nonlinear relative orbit simulations.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.