Issue |
MATEC Web of Conferences
Volume 51, 2016
2016 International Conference on Mechanical, Manufacturing, Modeling and Mechatronics (IC4M 2016)
|
|
---|---|---|
Article Number | 03004 | |
Number of page(s) | 10 | |
Section | Chapter 3: Experimental and Empirical Studies in Mechanical and Manufacturing Engineering | |
DOI | https://doi.org/10.1051/matecconf/20165103004 | |
Published online | 06 April 2016 |
Investigation on the Temporal Surface Thermal Conditions for Thermal Comfort Researches Inside A Vehicle Cabin Under Summer Season Climate
School of Mechanical & Electrical Engineering, Foshan University, Foshan 528000, China
a Corresponding author: zhangwencan@live.com
With the proposes of improving occupant's thermal comfort and reducing the air conditioning power consumption, the present research carried out a comprehensive study on the surface thermal conductions and their influence parameters. A numerical model was built considering the transient conduction, convective and radiation heat transfer inside a vehicle cabin. For more accurate simulation of the radiation heat transfer behaviors, the radiation was considered into two spectral bands (short wave and long wave radiation), and the solar radiation was calculated by two solar fluxes (beam and diffuse solar radiation). An experiment was conducted to validate the numerical approach, showing a good agreement with the surface temperature. The surface thermal conditions were numerically simulated. The results show that the solar radiation is the most important factor in determining the internal surface thermal conditions. Effects of the window glass properties and the car body surface conditions were investigated. The numerical calculation results indicate that reducing the transitivity of window glass can effectively reduce the internal surface temperature. And the reflectivity of the vehicle cabin also has an important influence on the surface temperature, however, it's not so obvious as comparison to the window glass.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.