Issue |
MATEC Web of Conferences
Volume 43, 2016
2016 4th International Conference on Nano and Materials Science (ICNMS 2016)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 5 | |
Section | Advanced materials and properties | |
DOI | https://doi.org/10.1051/matecconf/20164301006 | |
Published online | 19 February 2016 |
Asymptotic Effective Piezoelectric Coefficient Solution of Piezoresponse Force Microscopy for a Transversely Isotropic Piezoelectric Film
School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an Shaanxi, 710129, People’s Republic of China
a Corresponding author: wangjh@nwpu.edu.cn
Based on the coupled theory, a simple explicit solution of piezoresponse force microscopy (PFM) in determining the effective piezoelectric coefficient for an ultra-thin transversely isotropic piezoelectric film bonded to a rigid conducting substrate is obtained, using the Taylor expansion and homogeneous assumption. And it is found to be exactly the same as the well-known result for the case of piezoelectric thin film clamped between flat rigid electrodes for homogeneous external electric field. The electric charge and the distance from the image charge model are also derived and the influences of the film thickness and substrate permittivity on the effective piezoelectric coefficient are then discussed. The obtained results can be used to quantitatively interpret the PFM signals and directly detect the piezoelectric constant through PFM for an ultra-thin film or supply important information for constructing a reliable formula to describe the thickness effect.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.