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Abstract. Based on the coupled theory, a simple explicit solution of piezoresponse force microscopy (PFM) in 
determining the effective piezoelectric coefficient for an ultra-thin transversely isotropic piezoelectric film 
bonded to a rigid conducting substrate is obtained, using the Taylor expansion and homogeneous assumption. 
And it is found to be exactly the same as the well-known result for the case of piezoelectric thin film clamped 
between flat rigid electrodes for homogeneous external electric field. The electric charge and the distance from 
the image charge model are also derived and the influences of the film thickness and substrate permittivity on 
the effective piezoelectric coefficient are then discussed. The obtained results can be used to quantitatively 
interpret the PFM signals and directly detect the piezoelectric constant through PFM for an ultra-thin film or 
supply important information for constructing a reliable formula to describe the thickness effect. 

1 Introduction 
Making use of the converse piezoelectric effect, 

piezoresponse force microscopy (PFM), has emerged 
as a widely used technique for investigating 
ferroelectric and piezoelectric samples to characterize 
material properties at the nanometer scale [1-2]. 
Application of PFM to measure the two-dimensional 
domain structures and switching behavior in 
ferroelectrics and quantitatively detect the piezoelectric 
coefficients of piezoelectric films necessitates the 
development of reliable analytical methods to describe 
the involved image formation mechanisms [2].  

Essentially, theoretical investigation of PFM is a 
boundary value problem in piezoelectric solids. For a 
point electric charge on top of a transversely isotropic 
half plane Karapetian et al. [3] presented a 
piezoelectric Green’s function solution to calculate the 
corresponding surface displacements. Kalinin and 
Bonnell [4] and Kalinin et al. [5] adopted the analytical 
solutions for indentation problems to interpret the PFM 
responses. Instead of solving the piezoelectric 
equations, an alternative decoupled method, which is 
based on the assumption that the electric field under 
which the surface deformation is induced is purely 
calculated for the rigid dielectric, was originally 
proposed by Ganpule et al. [6] to account for the effect 
of 90º domain walls on PFM image. Agronin et al. [7] 

adapted a one-dimensional form to obtain piezoelectric 
strain coefficient d33 in ferroelectrics while Felten et al. 
[8] extended the decoupled approach to three-
dimensional cases. The decoupled approach neglects 
the electromechanical couplings and treats the 
piezoelectric strain as an eigenstrain. By doing that, the 
analysis becomes rather simple and is widely used to 
investigate PFM responses [9-13].   

However, due to the neglect of the 
electromechanical coupling, the accuracy of the 
decoupled method is ambiguous and it is desirable to 
develop a coupled theory to rigorously calculated PFM 
responses [9]. Wang et al. [14] extended the 
indentation analysis for piezoelectric films [15] to PFM 
problems and presented a closed-form solution for the 
effective piezoelectric coefficient. Following the same 
method, Pan et al.16 conducted a more detailed 
coupled analysis for the PFM signals of a transversely 
isotropic piezoelectric half space. The obtained results 
for the effective piezoelectric coefficient from the 
coupled theory for half space are implicit and 
complicated combinations of material constants and 
thus very difficult to use to detect piezoelectric 
constants directly. 

Except the work of Morozovska et al. [11] 
extending the decoupled theory to surface layers and 
thin films, most of the aforementioned theoretical 
investigations are based on the half space assumption, 
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without considering the effect of the film thickness. In 
this contribution, we investigate the PFM problem of 
an ultra-thin transversely isotropic piezoelectric film 
with the coupled theory presented in Refs. [14-16]. 
Using the Taylor expansion and homogeneous 
assumption, we obtain simple explicit solutions for the 
effective piezoelectric coefficient and the 
corresponding electric charge and distance from the 
image charge model. The influences of the film 
thickness and substrate permittivity on the effective 
piezoelectric coefficient are analyzed.

2 Fundamental Equations
A transversely isotropic piezoelectric film is perfectly 
bonded to a rigid conducting substrate as shown in 
Figure 1, above which a conducting axisymmetric 
SPM tip with an input potential 0� is located. The 
cylindrical polar coordinate system ( , ,r z� ) is 
introduced and the piezoelectric film is isotopic in the 
( ,r � ) plane. The thickness of the film is denoted by 
“ t ” and the tip curvature radius “ 0R ”. Using the 
simple image charge model, the input potential 0� is
regarded as an electric charge “Q ” at a distance “ d ” 
above the surface.

Figure 1. Schematic of a PFM Experiment Operated on a 
Piezoelectric Film with the Thickness t .

The input potential 0� is approximated as an 
electric charge Q at the distance d above the 
surface.

For a transversely isotropic piezoelectric film, the 
constitutive equation is:
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where 
ij

� and 
k

D are the stress and electric 
displacement components, respectively, 

ij
c ,

ij
e and 

ij
� are the elastic, piezoelectric and dielectric 
constants, respectively. The infinitesimal strain 

ij
�

and the electric field 
k

E are related to the 
displacement components

r
u ,

z
u and the electric 

potential � by:
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Without considering the contact force between the 
biased tip and the film upper-surface, we have the 
stress free conditions ( ,0) 0, ( ,0) 0

rz zz
r r� �
 
 . The 

corresponding boundary conditions for the rigid and 
conducting substrate are ( , ) 0, ( , ) 0

r z
u r t u r t
 


and ( , ) 0r t� 
 . Following the same method presented 
in Ref. [14], the surface potential (z=0) and 
displacement along the z axis could be expressed as:
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where ( )( 1,2,3)
i

B t i� 
)( 1,2,3)()( are functions of the film 
thickness t and material properties. In Eq. (3), � is
the Hankel transformation space coordinate, 

e
� the

ambient dielectric property and tt denotes /t d . And
0 ( )J r� is the 0th order Bessel function.

Then the effective piezoelectric coefficient 33
eff

d

(= (0,0) / (0,0)
z

u � ) for a thin film on a rigid and 
conducting substrate is expressed as follows:
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In Eq. (4), ( )( 1,2,3)
i

B t i� 
)( 1,2,3)( are unknown functions 
which should be determined from boundary conditions. 
In the image charge model, the input potential is 
viewed as an equivalent electrical charge. So it requires 
that (1) the potential at the tip apex equals the voltage 
applied on the conductive SPM tip; and (2) the radius 
of curvature of the equipotential surface at tip apex 
equals the radius of curvature of SPM tip[16], from 
which the effective electrical charge “Q ” and distance 
“ d are determined:

d

Q

z

r

piezoelectric film

t

0

biased tip 
with an input
potential �

 and  substraterigid conducting

0

tip curvature 
radius R
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3 Asymptotic solutions
Generally speaking, it is almost impossible to solve 
Eqs. (4-5) analytically. However, considering the film 
as “ultra-thin”, that is / 0t d � , we can expand the 
integral expressions in Taylor series at 0t 
 0t 
 and keep 
the first non-zero terms in Eqs. (4-5). Accordingly, 
Eqs. (4-5) transfer to a very simple form and the 
asymptotic solutions for the effective piezoelectric 
coefficient, electric charge, and distance of the ultra 
thin piezoelectric film are derived as:
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where 1C and 2C are constants related to material 
properties. Similar to the half space results [15-16], it 
is difficult to directly detect piezoelectric coefficients 
through PFM without the knowledge of the 
relationships between 1C and 2C and the material 
constants. Note that the electric field of the PFM tip 
progressively becomes homogeneous with the film 
thickness decreasing. Thus it is reasonable to assume 
that the strain and the electric field are uniform 
throughout the film thickness for an ultra-thin film
[17], resulting in:
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Meanwhile, assuming the radial displacement 
component 

r
u independent of z and considering 

the rigid substrate boundary condition ( , ) 0
r
u r t 
 , we 

have:

0, 0   (0 ,0 )
r rr
u r z t��� �
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ubstituting Eqs. (8) and (9) into Eq. (1), the 
following relationship between the surface 
displacement ( ,0)

z
u r and surface potential ( ,0)r�

is derived:
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According to the definition of the effective 
piezoelectric coefficient, one can get from Eq. (10)
that:

33 33 33(0,0) / (0,0) /eff

z
d u e c�
 � 
 (11)

and 

2
33 33 33( ,0) ( / ) ( ,0) /

z
D r e c r t�
 �� (12)

By comparisons between Eqs.(11-12) and Eqs.(6-
7), we obtain the relationships:

2
1 33 33 2 33 33 33/ ,  1 / ( / )C e c C e c
 
 �� (13)

In other way, one can numerically calculated the 
effective piezoelectric coefficient 33

eff

d and a 
normalized expression 2

0/ (3 )
e

d R t� from Eqs.(4-5)
and compared them with 33 33/e c and 

2
33 33 331 / ( / )e c �� respectively as shown in Figure 2. It 

is clear that as tt varies from 0.5 to 0.01, the 
calculated 33

eff

d from Eq.(4) do approach the results 
given in Eq.(11) and 2

0/ (3 )
e

d R t� equals 
2
33 33 331 / ( / )e c �� verifying the relationships in 

Eq.(13) .
Actually, taking advantage of the relationship 

between material constants 33 33 33 13 33 312d e c c c d
 � ,
Eq. (11) can be rewritten as:

33 33 13 33 312eff

d d c c d
 � (14)

This is the expression between the effective 
piezoelectric coefficient from PFM and the true one for 
an ultra-thin piezoelectric film. To be more specific, if
we introduce the relationship between the compliance 
and the stiffness constants 

13 33 13 11 12( )c c s s s
 � ,Eq.(14) is exactly the same as 
the well-known piezoelectric coefficient result for the 
case of piezoelectric thin film clamped between flat 
rigid electrodes for homogeneous external electric field
[18], and the effective piezoelectric coefficient from 
the decoupled theory for a piezoelectric film on a rigid 
and conducting substrate at / 0t d � reconsidering 
the transverse isotropy of the film [11]. This illustrates 
that the point-contact-like PFM geometry transits to the 
flat capacitor response for films rather thinner than the 
tip size.
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Figure 2. (a) Effective Piezoelectric Coefficient 33
eff

d ; (b) 
2

0/ (3 )
e

d R t� as the Normalized Thickness /t d Varies 
from 0.01 to 0.5.

The obtained asymptotic solution for the effective 
piezoelectric coefficient, which is only a division of the 
piezoelectric coefficient 33e by the elastic constant 

33c or a simple and explicit relationship with true 
piezoelectric coefficient 33d and other material 
constants, and the electric charge and distance in the 
image charge model can be directly used to detect the 
piezoelectric coefficient with PFM if the film could be
deemed as ultra-thin. That is / 0.03t d � from Figure 
2 at which the discrepancies between the calculated 
values and those from Eq.(14) are less than 1%. Taking 
the piezoelectric material PZT-4 for example, we have 

5/ 3.18 10R t �  from Eq. (7). This large value 
represents that the biased tip is much blunt and it is 
similar to a flat-ended punch. 

It is already known that the calculated effective 
piezoelectric coefficient from the half space solutions 
is much lower than the true coefficient 33d [15-16]. 
From Figure 2, it is demonstrated that as the 
normalized thickness decreases, the effective 
piezoelectric coefficient 33

eff

d declines to the ultra-thin
film solution. For PZT-4, 33 289.4(pm/ V)d 
 while 

33
eff

d for half space is 250(pm/V) and for ultra-thin
film 131.3(pm/V) (Figure 3).It means that the effective 
piezoelectric coefficient from PFM is lower than the 
true piezoelectric coefficient and the film thickness has 
an obviously large influence on it. In case of a sharp 

point SPM tip when the film can not be seen as an 
ultra-thin one or a half space, thickness effect must be 
carefully investigated. Then the obtained asymptotic 
solutions as / 0t d � would supply important 
information for constructing a reliable formula to 
describe the thickness effect. 
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Figure 3. The Effective Piezoelectric Coefficient 33
eff

d

versus the Normalized Thickness t/d.

Actually if the substrate is assumed to be 
insulating, e.g. the substrate permittivity approach 
infinity, the corresponding boundary condition 
becomes ( , ) 0

z
D r t 
 . From Eq.(9), we can obtain that 

the electric potential within the ultra-thin film is 
constant and so generates no surface displacement and 
gives rise to a zero 33

eff

d . A similar conclusion could be 
found in Ref. [11]. Thus a metallic substrate or with a 
giant permittivity is recommended to conduct a PFM 
experiment on thin film to explore the piezoelectric 
coefficient in order to suppress the thickness 
dependence.

4 Conclusions
In summary, using the Taylor expansion and 
homogeneous assumption, unlike the complicated 
implicit combination of material constants for a 
piezoelectric half space, a simple explicit solution for 
the effective piezoelectric coefficient of an ultra-thin
piezoelectric film bonded to a rigid and conducting 
substrate is obtained. The effective electric charge and 
the distance in the image charge model are also 
derived. The asymptotic solutions is exactly the same 
as the well-known result for the case of piezoelectric 
thin film clamped between flat rigid electrodes for 
homogeneous external electric field, and the decoupled 
effective piezoelectric coefficient solution for a 
piezoelectric film on a rigid and conducting substrate 
at   reconsidering the transverse isotropy of the film. 
The influences of the film thickness on the effective 
piezoelectric coefficient are discussed. A metallic 
substrate or with a giant permittivity is recommended 
to conduct a PFM experiment on thin film to explore 
the piezoelectric coefficient to suppress the thickness 
dependence. The obtained results can be directly used 
to detect the piezoelectric constant through PFM for an 
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ultra-thin film or supply important information for 
constructing a reliable formula to describe the 
thickness effect.

Acknowledgments
The authors are grateful for the financial support of 
this work by the National Science Foundation of China 
(NO.11502206) and the Fundamental Research 
Foundation of Northwestern Polytechnical University 
(No. JCY20130124).

References
1. M. Alexe, A. Gruverman, Nanoscale 

Characterization of Ferroelectric Materials

(Springer, New York, 2004).
2. J. Tobias, H. Ákos, S. Elisabeth, Appl. Phys. Lett.,

91, 25 (2007).
3. E. Karapetian, I. Sevostianov, K. Kachanov,

Philos. Mag. B, 80, 3 (2000).
4. S.V. Kalinin, D.A. Bonnell, Phys. Rev. B, 65, 6

(2002).
5. S.V. Kalinin, E. Karapetian, M. Kachanov, Phys. 

Rev. B, 70, 18 (2004).
6. C. Ganpule, S.V. Nagarjan, H. Li, A.S. Ogale,

D.E. Steinhauer, S. Aggarwal, E. Williams, R.
Ramesh, D.P. Wolf, Appl. Phys. Lett., 77,2 (2000).

7. A. Agronin, M. Molotskii, Y. Rosenwaks, E.
Strassburg, A. Boag, S. Mutchnik, G. Rosenman,
J. Appl. Phys., 97, 8 (2005).

8. F. Felten, G.A Schneider, J.M. Saldan, and S.V.
Kalinin, J. Appl. Phys., 96, 1(2004).

9. S.V. Kalinin, E.A. Eliseev, A.N. Morozovska,
Appl. Phys. Lett., 88, 23 (2006).

10. E.A. Eliseev, S.V. Kalinin, S. Jesse, S.L. Bravina,
A.N. Morozovska, Appl. Phys. Lett., 102, 1
(2007).

11. A.N. Morozovska, E.A. Eliseev, S.V. Kalinin, J.
Appl. Phys., 102, 7 (2007).

12. D. Scrymgeour, V. Gopalan, Phys. Rev. B, 72, 2
(2005).

13. L.L. Tian, A. Vasudevarao, A. Morozovska, N.
Eliseev, E., S.V. Kalinin, V. Gopalan, J. Appl. 

Phys. ,104, 7 (2008).
14. J.H. Wang, C.Q.Chen, T.J. Lu, J. Mech. Phys. 

Solids, 56, 56 (2008).
15. J.H. Wang, C.Q. Chen, Appl. Phys. Lett., 99, 17

(2011).
16. K.Pan, Y.Y.Liu, S.H.Xie, Y.M.Liu, J.Y.Li, Acta 

Mater., 61, 18 (2013).
17. X.G.Ning, M.Lovell, W.S.Slaughter, Wear, 26, 7

(2006).
18. K.Lefki, G. J. M Dormans., J. Appl. Phys. 76

(1994).

01006-p.5


