Issue |
MATEC Web of Conferences
Volume 40, 2016
2015 International Conference on Mechanical Engineering and Electrical Systems (ICMES 2015)
|
|
---|---|---|
Article Number | 09005 | |
Number of page(s) | 4 | |
Section | Computer information technology and application | |
DOI | https://doi.org/10.1051/matecconf/20164009005 | |
Published online | 29 January 2016 |
Design of clinical intelligent percutaneous myocardial laser revascularization operating platform software
1 Department of Cardiovascular Internal Information, Nanlou Branch of Chinese PLA General Hospital, Beijing, China
2 School of Automation, Beijing Institute of Technology Beijing, China
3 Department of Research, Chinese PLA General Hospital, Beijing, China
Percutaneous transmyocardial laser revasculariztion (PMLR), a kind of new percutaneous coronary intervention based on transmyocardial laser revascularization (TMLR) is to improve the circulation of ischemia myocardium by laser myocardial revascularization from the cardiac cavity. In our previous research, the characteristic of laser transmission in myocardium including photon reflection, absorption and scattering was introduced. The photon state at the emission, transmission and disappearance stage, the processes of photon weight decay and the change of photon movement step and direction were described and simulated by using Monte Carlo method. All of the above were simulated by MATLAB, and the relationship between different optical property parameters, absorption coefficient, scattering coefficient, anisotropic coefficient, and photon energy density in myocardium was discussed. In this study simulation of photon transport using Monte Carlo operating platform was programmed by C++ language to investigate the influence of increasing photons on the simulation at different optical properties parameters and clinical intelligent PMLR operating platform was established to achieve the optimal number of laser holes, aperture, single hole perfusion, threshold power and corresponding parameters of each hole, which provided a reference for the operation program.
Key words: ischemic cardiomyopathy / percutaneous myocardial laser / revascularization Monte Carlo / software
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.