Issue |
MATEC Web of Conferences
Volume 34, 2015
2015 2nd International Conference on Mechatronics and Mechanical Engineering (ICMME 2015)
|
|
---|---|---|
Article Number | 06001 | |
Number of page(s) | 6 | |
Section | Power electronics and electrical engineering | |
DOI | https://doi.org/10.1051/matecconf/20153406001 | |
Published online | 11 December 2015 |
Design of an Improved Type Rotary Inductive Coupling Structure for Rotatable Contactless Power Transfer System
Department of Electrical Engineering, National Cheng Kung University, Tainan City, Taiwan
a Corresponding author: leejy@mail.ncku.edu.tw
This paper is aimed at analyzing the rotary inductive coupling structure of contactless rotary transformer. The main feature of the proposed rotatable contactless power transfer system is which winding is coaxial-interlayered for improving the magnetic coupling capability. There is no ferrite core used in the secondary-side of the rotary inductive coupling structure, this helps to ease the exerted force that is stress by the secondary-side on spindle. In order to verify the feasibility of the proposed contactless power transfer system for rotary applications, an inductive powered rotary machinery and the control system have been integrated. The experimental results show that the maximum power transfer efficiency of the proposed rotary inductive coupling structure is about 94.8%. The maximum output power received in the load end is 1030 W with transmission efficiency of 88%.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.