Issue |
MATEC Web of Conferences
Volume 32, 2015
International Symposium of Optomechatronics Technology (ISOT 2015)
|
|
---|---|---|
Article Number | 04010 | |
Number of page(s) | 4 | |
Section | Optomechatronics for Bio-Medical Applications | |
DOI | https://doi.org/10.1051/matecconf/20153204010 | |
Published online | 02 December 2015 |
Design and Development of Nonlinear Optical Microscope System: Simple Implementation with epi-Illumination Platform
1 Department of Mechanical Engineering, KAIST, Daejeon, South Korea
2 Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
a Corresponding author: dggweon@kaist.ac.kr
During the research using fluorescence-tagged or auto-fluorescence molecules, meaningful information is often buried deep inside the tissue, not its surface. Therefore, especially in the field of biomedical imaging, acquiring optically sectioned images from deep inside the tissue is very important. As well know already, confocal laser scanning microscopy (the most well-known optical sectioning microscopy) gives axially-resolved fluorescence information using the physical background blocking component called pinhole. However, the axial range of imaging is practically limited due to such optical phenomena as the light scattered and absorbed in the tissue. However, nonlinear optical microscopy (e.g. Multiphoton microscopy, harmonic generation microscopy, coherent anti-Stokes Raman spectroscopy) realized by the development of ultrafast light sources has been used for visualizing various tissues, especially in vivo, because of their low sensitivity to the limitation caused by the scattering and the absorption of light. Although nonlinear optical microscopy gives deep tissue image, it is not easy for many researcher to build customized nonlinear system. Here, we introduce an easy and simple way designing and developing such nonlinear optical microscope with upright or inverted epi-illumination platform using commercial optical components only.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.