Issue |
MATEC Web of Conferences
Volume 32, 2015
International Symposium of Optomechatronics Technology (ISOT 2015)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 6 | |
Section | MOEMS | |
DOI | https://doi.org/10.1051/matecconf/20153201004 | |
Published online | 02 December 2015 |
Multiphysics & Parallel Kinematics Modeling of a 3DOF MEMS Mirror
1 FEMTO-ST Institute, AS2M department, Univ. Bourgogne Franche-Comté, Univ. de Franche-Comté CNRS/ENSMM, 24 rue Alain Savary, 25000 Besançon, France
2 Interdisciplinary Microsystems Group, University of Florida, Gainesville, USA
This paper presents a modeling for a 3DoF electrothermal actuated micro-electro-mechanical (MEMS) mirror used to achieve scanning for optical coherence tomography (OCT) imaging. The device is integrated into an OCT endoscopic probe, it is desired that the optical scanner have small footprint for minimum invasiveness, large and flat optical aperture for large scanning range, low driving voltage and low power consumption for safety reason. With a footprint of 2mm×2mm, the MEMS scanner which is also called as Tip-Tilt-Piston micro-mirror, can perform two rotations around x and y-axis and a vertical translation along z-axis. This work develops a complete model and experimental characterization. The modeling is divided into two parts: multiphysics characterization of the actuators and parallel kinematics studies of the overall system. With proper experimental procedures, we are able to validate the model via Visual Servoing Platform (ViSP). The results give a detailed overview on the performance of the mirror platform while varying the applied voltage at a stable working frequency. The paper also presents a discussion on the MEMS control system based on several scanning trajectories.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.