Issue |
MATEC Web of Conferences
Volume 27, 2015
2015 4th International Conference on Engineering and Innovative Materials (ICEIM 2015)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 4 | |
Section | Novel materials and properties | |
DOI | https://doi.org/10.1051/matecconf/20152702006 | |
Published online | 20 October 2015 |
Investigation of the Effects of Solution Temperature on the Corrosion Behavior of Austenitic Low-Nickel Stainless Steels in Citric Acid using Impedance and Polarization Measurements
1 Department of Engineering Science, University of the Philippines Los Baños, Philippines
2 Department of Metallurgical, Mining and Materials Engineering, University of the Philippines – Diliman, Philippines
a Corresponding author: fmmulimbayan@gmail.com
b lito.mena@nxp.com
Stainless steels may be classified according to alloy microstructure – ferritic, austenitic, martensitic, duplex, and precipitation hardening grades. Among these, austenitic grade has the largest contribution to market due to the alloy’s numerous industrial and domestic applications. In this study, the corrosion behavior of low-Nickel stainless steel in citric acid was investigated using potentiodynamic polarization techniques and Electrochemical Impedance Spectroscopy (EIS). The corrosion current density which is directly related to corrosion rate was extracted from the generated anodic polarization curve. Increasing the temperature of the citric acid resulted to increased corrosion current densities indicating higher corrosion rates at initial corrosion condition. EIS was performed to generate Nyquist plots whose shape and size depicts the corrosion mechanism and corrosion resistance of the alloy in citric acid, respectively. All the generated Nyquist plots have depressed semi-circle shapes implying that corrosion process takes place with charge-transfer as the rate-determining step. Based from the extracted values of polarization resistance (Rp), the temperature of the solution has negative correlation with the corrosion resistance of the studied alloy.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.