Issue |
MATEC Web of Conferences
Volume 21, 2015
4th International Conference on New Forming Technology (ICNFT 2015)
|
|
---|---|---|
Article Number | 12010 | |
Number of page(s) | 6 | |
Section | Modelling and Design | |
DOI | https://doi.org/10.1051/matecconf/20152112010 | |
Published online | 10 August 2015 |
Finite element modelling of deformation behaviour in incremental sheet forming of aluminium alloy
1 Institute of Mechanical and Electro-mechanical Engineering, National Formosa University, Yunlin, Taiwan
2 Department of Power Mechanical Engineering, National Formosa University, Yunlin, Taiwan
a Corresponding author: cpjiang@nfu.edu.tw
In this paper, the finite element method (FEM) is used to study the incremental sheet forming process of pyramidal shape. The material used is aluminium alloy 5052. The tool, a hemispherical ball-head with a diameter (d = 4 mm) made of HSS tool steel, is used to press down on the sheet metal causing locally plastic deformation. The comparison between spiral tool path, spiral-step tool path and z-level tool path is carried out. Moreover, the final thickness distribution is investigated. The results indicate that the minimal thickness can be found on the corner of wall angle in SPIF process. Under the same step over, spiral-step tool path can obtain the deepest depth for pyramidal shape. The maximum formability for successful forming of the pyramidal shape with depth 60 mm is wall angles 65∘.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.