Issue |
MATEC Web of Conferences
Volume 21, 2015
4th International Conference on New Forming Technology (ICNFT 2015)
|
|
---|---|---|
Article Number | 12004 | |
Number of page(s) | 6 | |
Section | Modelling and Design | |
DOI | https://doi.org/10.1051/matecconf/20152112004 | |
Published online | 10 August 2015 |
Finite element analysis of advanced bicycle precision brake disk forming technology
Department of Industrial Education and Technology, National Changhua University of Education, Changhua 500, Taiwan
a Corresponding author: dcchen@cc.ncue.edu.tw
In recent years, the bicycle has become an environmentally friendly transportation. The bicycle can be divided into mountain bicycle and highway bicycle. Safe driving is the prior consideration. The bicycle braking system can be divided into oil pressure disk brakes and mechanical disk brakes. The brake disk system is one indispensable component of the safe system. In accordance to overall weight consideration of the bike, the brake disk should also focus on the lightweight design. This paper discussed an innovative brake disk forming technology for 6061 aluminum alloy by the rigid-plastic finite element analysis. The simulation parameters include geometric shapes of the brake disk and mold, die temperature, and friction factors. The stress and strain in forming, brake deformation and vibration modal analysis of brake disk in riding were studied. The paper is expected to offer some precision bicycle brake disk manufacture knowledge for industry.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.