Issue |
MATEC Web of Conferences
Volume 21, 2015
4th International Conference on New Forming Technology (ICNFT 2015)
|
|
---|---|---|
Article Number | 10005 | |
Number of page(s) | 7 | |
Section | Powder Sintering | |
DOI | https://doi.org/10.1051/matecconf/20152110005 | |
Published online | 10 August 2015 |
Towards low-friction and wear-resistant plasma sintering dies via plasma surface co-alloying CM247 nickel alloy with V/Ag and N
1 The University of Birmingham, Birmingham B15 2TT, UK
2 AIN, Cordovilla (Navarra) 31191, Spain
3 The University of Strathclyde, Glasgow G1 1XJ, UK
a Corresponding author: e-mail: zhzhxue@yahoo.com
Nickel based superalloys have good oxidation and creep resistance and hence they can function under high mechanical stress and high temperatures. However, their undesirable tribological behaviour is the major technical barrier to the challenging high-temperature, lubricant-free plasma sintering tool application. In this study, nickel based CM247 superalloy surfaces were co-alloyed using innovative active screen plasma technology with both interstitial element (e.g. N) and substitutional alloying elements (e.g. V and Ag) to provide a synergy effect to enhance its tribological properties. The tribological behaviour of the plasma co-alloyed CM247 superalloy surfaces were fully evaluated using reciprocal and pin-on-disc tribometers at temperatures from room temperature to 600 ∘C. The experimental results demonstrate that the co-alloyed surface with N, Ag and V can effectively lower the friction coefficient, which is expected to help demoulding during lubricant-free plasma sintering.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.