Issue |
MATEC Web of Conferences
Volume 21, 2015
4th International Conference on New Forming Technology (ICNFT 2015)
|
|
---|---|---|
Article Number | 06001 | |
Number of page(s) | 7 | |
Section | Hydroforming and Tube Forming | |
DOI | https://doi.org/10.1051/matecconf/20152106001 | |
Published online | 10 August 2015 |
The influence of axial compressive stresses on the formability and scattering of process parameters in micro-hydroforming processes of tubes
Cologne University of Applied Sciences Cologne, Betzdorfer Strasse 2, 50679 Cologne, Germany
a Corresponding author: e-mail: christoph.hartl@fh-koeln.de
Feasible product geometries manufactured with micro-hydroforming, as well as process stability are crucially influenced by the microstructure of the used tube material. The higher ratio of grain size to tube wall thickness dk/t0 in micro-hydroforming, compared to conventional tube hydroforming, leads to an increase of scattering of process parameters and instabilities. This paper presents experimental and theoretical results for the micro-hydroforming of tubes made from stainless steel and from platinum with a focus on the correlations between the microstructure of the workpiece material, the stress state during forming and the resulting stability of the forming process. Investigated tube dimensions were 800 µm outer diameter and 40 µm wall thickness of the steel tubes, respectively 1650 µm and 76 µm of the platinum tubes. The average ratio dk/t0 was about 0.3 for the steel material and about 0.9 for the platinum alloy. It has been shown that superimposed axial stresses are suitable to reduce the restricting influence of an increased ratio dk/t0 and to improve the forming result as well as the process stability.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.