Issue |
MATEC Web of Conferences
Volume 16, 2014
CSNDD 2014 - International Conference on Structural Nonlinear Dynamics and Diagnosis
|
|
---|---|---|
Article Number | 08004 | |
Number of page(s) | 7 | |
Section | Analytical method in nonlinear dynamics | |
DOI | https://doi.org/10.1051/matecconf/20141608004 | |
Published online | 01 September 2014 |
A Time-Domain Asymptotic Approach to Predict Saddle-Node and Period Doubling Bifurcations in Pulse Width Modulated Piecewise Linear Systems
GAEI research group, Dept. d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
a e-mail: abdelali.elaroudi@urv.cat
In this paper closed-form conditions for predicting the boundary of period-doubling (PD) bifurcation or saddle-node (SN) bifurcation in a class of PWM piecewise linear systems are obtained from a time-domain asymptotic approach. Examples of switched system considered in this study are switching dc-dc power electronics converters, temperature control systems and hydraulic valve control systems among others. These conditions are obtained from the steady-state discrete-time model using an asymptotic approach without resorting to frequency-domain Fourier analysis and without using the monodromy or the Jacobian matrix of the discrete-time model as it was recently reported in the existing literature on this topic. The availability of such design-oriented boundary expressions allows to understand the effect of the different parameters of the system upon its stability and its dynamical behavior.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.