Issue |
MATEC Web of Conferences
Volume 14, 2014
EUROSUPERALLOYS 2014 – 2nd European Symposium on Superalloys and their Applications
|
|
---|---|---|
Article Number | 15001 | |
Number of page(s) | 6 | |
Section | Posters: Deformation and Damage Mechanisms I: Creep | |
DOI | https://doi.org/10.1051/matecconf/20141415001 | |
Published online | 29 August 2014 |
Relating fundamental creep mechanisms in Waspaloy to the Wilshire equations
1 Swansea University, Swansea, GB
2 Cambridge University, Cambridge, GB
3 Rolls-Royce plc., Derby, GB
a Corresponding author: 481652@swansea.ac.uk
Creep tests of the polycrystalline nickel alloy Waspaloy have been conducted at Swansea University, for varying stress conditions at 700 ∘C. Investigation through use of Transmission Electron Microscopy at Cambridge University has examined the dislocation networks formed under these conditions, notably those with stresses above and below the yield stress. This paper highlights how the dislocation structures vary throughout creep and proposes a dislocation mechanism theory for creep in Waspaloy. In particular, the roles of recovery, tertiary gamma prime particles and dislocation foresting are examined, and related back to observations from the Wilshire fits. The virgin (untested) material has been forged and heat treated, containing some recrystallised material together with areas of more heavily deformed and recovered material clustered around the grain boundaries. Observations from tests below the 0.2% proof stress show relatively low dislocation densities away from grain boundaries and dislocation movement can be seen to be governed by interactions with the γ′ precipitates. In contrast, above the 0.2% proof stress, TEM observations show a substantially greater density of dislocations. The increased density provides an increment of strength through forest hardening. At stresses above the original yield point, determined by the precipitates, the creep rate is controlled by inter-action with the dislocation forest and results in an apparent activation energy change. It is proposed that the activation energy change is related to the stress increment provided by work hardening, as can be observed from Ti, Ni and steel results.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.