Issue |
MATEC Web of Conferences
Volume 13, 2014
ICPER 2014 - 4th International Conference on Production, Energy and Reliability
|
|
---|---|---|
Article Number | 02012 | |
Number of page(s) | 5 | |
Section | Energy and Fuel Technology | |
DOI | https://doi.org/10.1051/matecconf/20141302012 | |
Published online | 17 July 2014 |
Effect of Syngas Moisture Content on the Emissions of Micro-Gas Turbine Fueled with Syngas/LPG in Dual Fuel Mode
Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
a Corresponding author : husainsadig@yahoo.com
Syngas produced by gasification has a potential to be one of the fueling solutions for gas turbines in the future. In addition to the combustible constituents and inert gases, syngas derived by gasification contains a considerable amount of water vapor which effect on syngas combustion behaviour. In this work, a micro-gas turbine with a thermal capacity of 50 kW was simulated using ASPEN Plus. The micro gas turbine system emissions were characterized using dry syngas fuels with a different composition, syngas 1 (10.53% H2, 24.94% CO, 2.03% CH4, 12.80% CO2, and 49.70% N2) and syngas 2 (21.62% H2, 32.48% CO, 3.72% CH4, 19.69% CO2, and 22.49% N2) mixed with LPG in a dual fueling mode. The effect of syngas moisture content was then studied by testing the system with moist syngas/LPG with a moisture content ranging from 0 to 20% by volume. The study demonstrates that the syngas moisture content has high influence on nitrogen oxides and carbon monoxide emissions. It’s found that for 5% syngas moisture content, the NOx emission were reduced by 75.5% and 83% for Syngas 1 and Syngas 2 respectively. On carbon monoxide emissions and for same moisture content ratio, the reduction was found to be 43% and 57% for syngas1 and syngas 2 respectively.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.