Issue |
MATEC Web of Conferences
Volume 12, 2014
FDMD II - JIP 2014 - Fatigue Design & Material Defects
|
|
---|---|---|
Article Number | 04019 | |
Number of page(s) | 3 | |
Section | Poster Session 4C: Fatigue Crack Initiation and Growth | |
DOI | https://doi.org/10.1051/matecconf/20141204019 | |
Published online | 09 June 2014 |
Fatique behaviour of electrical steel
University of Kassel, Institute for Materials Engineering, 34125 Kassel, Germany
a Corresponding author: a.brueckner-foit@uni-kassel.de
Electrical steel comes into focus with the development of electrically powered cars. In contrast to electrical motors used stationarily (e.g. conveyer belt drives in industrial applications), electrical steel in a car engine is subjected to cyclic loading due to vibrations caused by the imbalance of the rotor and start and stop driving events. For a safe and reliable design of an electrical motor the fatigue behaviour of electrical steel needs to be analysed. To minimize eddy current losses, a rotor consists of several hundred electrical steel sheets with a typical thickness of less than 1 mm. Due to optimal electrical and magnetic properties a very coarse microstructure of electrical steel is required. Only one to three grains are distributed along sheet thickness. Regarding the grain size and sheet thickness the material behaviour is governed by the reaction of single grains and grain-grain-interaction to external cyclic loading. Fatigue experiments with a load ratio of R = 0.005 and R = 0.1 were carried out. They give a very flat S-N-curve where the fatigue limit is close to the yield strength of this electrical steel. Crack initiation is observed at surface roughness and areas of stress concentration resulting from manufacturing processes.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.