Issue |
MATEC Web Conf.
Volume 408, 2025
44th Conference of the International Deep Drawing Research Group (IDDRG 2025)
|
|
---|---|---|
Article Number | 01086 | |
Number of page(s) | 5 | |
Section | Full Papers | |
DOI | https://doi.org/10.1051/matecconf/202540801086 | |
Published online | 07 May 2025 |
Investigation of the impact of a rotationally superimposed punch stroke on the binding mechanisms of a clinched joint
1
TUD Dresden University of Technology, Chair of Joining Technology and Assembly,
01069
Dresden, Germany
2
TUD Dresden University of Technology, Chair of Forming and Machining Technology,
01069
Dresden, Germany
* Corresponding author: stephan.lueder@tu-dresden.de
This paper examines the impact of a rotationally superimposed punch stroke on the binding mechanisms of clinched joints of aluminum sheets. As part of the development of a method for ensuring the versatility of clinching, an additional rotational movement of the punch was introduced as a control variable to influence friction in the mechanical joining process. The effect of rotational superimposition on the force-displacement curve of the clinching processes was investigated using four test variants with different kinematics. The primary objective was to evaluate the binding mechanisms that maintain the integrity of the clinched joint. To evaluate the force closure of the resulting joint, two testing methods were employed throughout the course of the research, non-destructive resistance measurement using four-wire sensing method and destructive torsion testing. A crucial factor influencing the efficacy of the process is surface cleanliness, as contaminants between joining partners can impede the effectiveness of the clinched joint. Therefore, all specimens were meticulously cleaned prior to experimentation. This method exhibits promising potential in creating clinched joints that align with the demands of flexible manufacturing environments.
Key words: Joining / Sheet Metal / Tribology / Clinching
© The Authors, published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.