Issue |
MATEC Web Conf.
Volume 408, 2025
44th Conference of the International Deep Drawing Research Group (IDDRG 2025)
|
|
---|---|---|
Article Number | 01081 | |
Number of page(s) | 6 | |
Section | Full Papers | |
DOI | https://doi.org/10.1051/matecconf/202540801081 | |
Published online | 07 May 2025 |
Mechanical joinability of microstructurally graded structural components manufactured from hypoeutectic aluminium casting alloys
1
LWK, Chair of Materials Science, Paderborn University,
33098
Paderborn, Germany
2
LWF, Laboratory for Material and Joining Technology, Paderborn University,
33098
Paderborn, Germany
* Corresponding author: neuser@lwk.upb.de
Lightweight design is a driving concept in modern automotive engineering to minimize resource consumption over a vehicle's lifecycle through multi-material design, which relies on the use of joining techniques in car body fabrication. Multi-material design and the increasing trend towards producing large structural components using the megacasting process pose considerable challenges, particularly in the mechanical joining of aluminium-silicon (AlSi) castings. These castings typically exhibit low ductility and are prone to cracking when mechanically joined. Based on the excellent castability of hypoeutectic AlSi alloys, these are applied in sand casting and die casting as well as in megacasting. With a silicon content between 7 wt% and 12 wt%, these AlSi-alloys have a plate-like silicon phase that initiates cracks during mechanical joining. To enhance the joinability of castings, the research hypothesis is that improved solidification conditions enable a significant modification in the microstructure and therefore, increase the mechanical properties. During the manufacture of the castings using the sand casting process, the solidification conditions within the structural elements are varied to modify the microstructure to obtain castings with graded microstructure. The castings are evaluated using mechanical, microstructural and joining testing methods and finally, a microstructure-joinability correlation is established.
Key words: Joining / Casting / Self-pierce riveting / Aluminium casting alloy
© The Authors, published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.