Issue |
MATEC Web Conf.
Volume 240, 2018
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)
|
|
---|---|---|
Article Number | 01026 | |
Number of page(s) | 4 | |
Section | Heat, Mass and Momentum Transfer | |
DOI | https://doi.org/10.1051/matecconf/201824001026 | |
Published online | 27 November 2018 |
Numerical study of the effect of heat transfer on solid phase formation during decompression of CO2 in pipelines
Department of Chemical Engineering, University College London, WC1E 7JE, London, UK
* Corresponding author: h.mahgerefteh@ucl.ac.uk
CO2 solid phase formation accompanying rapid decompression of high-pressure CO2 pipelines may lead to blockage of the flow and safety valves, presenting significant hazard for safe operation of the high-pressure CO2 storage and transportation facilities. In this study, a homogeneous equilibrium flow model, accounting for conjugate heat transfer between the flow and the pipe wall, is applied to study the CO2 solid formation in a 50 mm internal diameter and 37 m long pipe for various initial thermodynamic states of CO2 fluid and wide range of discharge orifice diameters. The results show that the rate of CO2 solid formation in the pipe is limited by heat transfer at the pipe wall. The predicted amounts of solid CO2 are discussed in the context of venting of CO2 pipelines.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.