Issue |
MATEC Web Conf.
Volume 240, 2018
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 6 | |
Section | Heat, Mass and Momentum Transfer | |
DOI | https://doi.org/10.1051/matecconf/201824001002 | |
Published online | 27 November 2018 |
Influence of forced convection on the evaporation and internal dynamics inside of an array of salt solution droplets
1
School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
2
State Company for Oil Projects, Ministry of Oil, Baghdad, Iraq
* Corresponding author: o.alrawi@hotmail.com
The effects of a gentle forced air convection on the internal dynamics of an array of multiple pinned sessile salt solution droplets are investigated via fully-coupled transient ALE finite element analysis. Results highlight the competition between the shear-induced circulation within the droplets and the gravity-driven flow in the droplets arising from increasing liquid density in regions of high water evaporation. At low air speeds, gravity effects dominate, resulting in a non-uniform concentration distribution. However, at higher speeds the shear-induced circulation within the droplets becomes sufficient to mix the liquid within the droplets via a 3D flow pattern, resulting in greater concentration uniformity. In addition, the shielding effect of leading droplets on downstream droplets is explored for various air speeds, with results showing differences in average concentration levels.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.