Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 02019 | |
Number of page(s) | 4 | |
Section | Track 2: Mechanical, Mechatronics and Civil Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819202019 | |
Published online | 14 August 2018 |
PID electro-hydraulic cylinder force tracking system with friction compensation
Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's Institute of TechnologyLadkrabang, Bangkok, Thailand
*
Corresponding author : weerapong.kmitl@gmail.com
Friction can be found in all mechanical systems, and is the cause of control tracking error. In this article, LuGre friction model for symmetric hydraulic cylinder was studied and obtained experimentally. The estimated friction force was applied for reference force compensation. Force tracking performances of PID force control systems with and without friction compensation were tested and compared. Control system with friction compensation outperformed one without in all cases of tracking tests. The best result was found in the square force tracking tests, with an average error at maximum compression force of 86.105 N in the case of with friction compensation compared with error of 511.996 N in the case without. However, the estimated friction achieved in the study was noisy. This is due to the use of noisy numerically differentiated velocity signal in the friction estimation procedure.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.