Issue |
MATEC Web of Conferences
Volume 166, 2018
The 2nd International Conference on Mechanical, Aeronautical and Automotive Engineering (ICMAA 2018)
|
|
---|---|---|
Article Number | 02009 | |
Number of page(s) | 5 | |
Section | Vehicle Design and System Control Engineering | |
DOI | https://doi.org/10.1051/matecconf/201816602009 | |
Published online | 23 April 2018 |
Design of Model-based Controller with Disturbance Estimation in Steer-by-wire System
KAIST, Department of Mechanical Engineering, 34141 Daejeon, Republic of Korea
The steer-by-wire system is a next generation steering control technology that has been actively studied because it has many advantages such as fast response, space efficiency due to removal of redundant mechanical elements, and high connectivity with vehicle chassis control, such as active steering. Steer-by-wire system has disturbance composed of tire friction torque and self-aligning torque. These disturbances vary widely due to the weight or friction coefficient change. Therefore, disturbance compensation logic is strongly required to obtain desired performance. This paper proposes model-based controller with disturbance compensation to achieve the robust control performance. Targeted steer-by-wire system is identified through the experiment and system identification method. Moreover, model-based controller is designed using the identified plant model. Disturbance of targeted steer-by-wire is estimated using disturbance observer(DOB), and compensate the estimated disturbance into control input. Experiment of various scenarios are conducted to validate the robust performance of proposed model-based controller.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.