Issue |
MATEC Web Conf.
Volume 162, 2018
The 3rd International Conference on Buildings, Construction and Environmental Engineering, BCEE3-2017
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 6 | |
Section | Water Resources Engineering and Geomatics | |
DOI | https://doi.org/10.1051/matecconf/201816203009 | |
Published online | 07 May 2018 |
Hydraulic performance of abrupt outlet transition structure with strip guide vanes at subcritical flow
Building and Construction Dept., University of Technology, Baghdad, Iraq
* Corresponding author: 40071@uotechnology.edu.iq; jaafarmaatooq@gmail.com
For some stream structures such as barrages, regulators, as well as change of channel cross section, the downstream expansion transitions structures are the common requirement. Eddies, as a result of the flow separation in such structures leads to destruction the bed and sides of the downstream channel. Head loss, on the other hand, produced through the expansion is important because it affects the stage at downstream. This study is restricted to developing the hydraulic performance of abrupt outlet transition at subcritical flow for both decreasing the head losses besides spreading the flow transversely to achieve regular velocity across the width as much as possible. New appurtenances, is adopting to install at specified configuration into a sudden transition. The appurtenances consisted of two successive rows of thin plates used as guide vanes to direct and spread the flow across the width with more uniformity. The guide vanes also keep the head losses at minimum possible. This attempt, through the results, proved that it has considerable hydraulic and economic advantages as compared to using a flared wall. Greater uniformity in velocity distributions of flow across the width, shorter length, and 70% lesser head loss are the results of the hydraulic performance of abrupt expansion transition equipped with two sets of strip vanes as compared to that with the plain one.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.