Issue |
MATEC Web of Conferences
Volume 150, 2018
Malaysia Technical Universities Conference on Engineering and Technology (MUCET 2017)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 6 | |
Section | Electrical & Electronic | |
DOI | https://doi.org/10.1051/matecconf/201815001004 | |
Published online | 23 February 2018 |
Power Factor Improvement Using Automatic Power Factor Compensation (APFC) Device for Medical Industries in Malaysia
Department of Electrical Engineering Technology, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
* Corresponding author: zmaryamnabihah@yahoo.com
This paper present the project designed to correcting power factor for medical industries in Malaysia automatically. Which with hope to make the cost and energy usage efficient, because the energy source are depleting due to increase in population. Power factor is the ratio of real power and apparent power. This definition is mathematically represented as kW/kVA where kW is active power and kVA is apparent power (active + reactive). Reactive power is the non-working power generated by the magnetic and inductive load to generate magnetic flux. The increase in reactive power increase the apparent power so the power factor will decrease. Low pF will cause the industry to meet high demand thus making it less efficient. The main aim of this project is to increasing the current power factor of medical industries from 0.85 to 0.90. Power factor compensation contribute to reduction in current-dependent losses and increase energy efficiency while expanding the reliability of planning for future energy network. As technology develops, the gradual cost and efficiency penalty should reduce. Therefore, automatic power factor compensation device should become cost-effective and smaller device over time. That is the reason this project is using programmable device as it is a miniature architecture device.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.