Issue |
MATEC Web of Conferences
Volume 150, 2018
Malaysia Technical Universities Conference on Engineering and Technology (MUCET 2017)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 6 | |
Section | Electrical & Electronic | |
DOI | https://doi.org/10.1051/matecconf/201815001005 | |
Published online | 23 February 2018 |
A High Torque Segmented Outer Rotor Permanent Magnet Flux Switching Motor for Motorcycle Propulsion
Research Centre for Applied Electromagnetics, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor Malaysia
* Corresponding author: mb.fkee.uthm@gmail.com
Electric scooters also known as electric motorcycle are viable and personal means of road transportation have been making their ways into the world markets now because in them, combustion engine with the use of fuel oil for propulsion have been completely eliminated for economic and environmental imperatives. Electric motor which converts electrical energy into mechanical energy is used to overcome the complication of combustion engine. As it is, everyone is opting for combustion engine free and fuel-less type of vehicle. For this reason, manufacturers have exhibited interest, making research on electric motor very attractive. Meanwhile, surface permanent magnet synchronous motor (SPMSM) has been successfully developed having output torque of 110 Nm, the assembly of motor lacked mechanical strength between the rotor yoke and the mounted permanent magnet (PM) which heats up during speed operation, resulting to poor performance. To overcome the challenges laced with SPMSM, this paper presents a novel design of 24 stator 14 pole outer rotor-permanent magnet flux switching motor (SOR-PMFSM) capable of high torque and high performance. It employs an unconventional segmented rotor which has short flux path flow. It also embraces alternate stator tooth windings to reduce material cost. Design specifications and restriction with input DC current are the same with SPMSM. The 2D-FEA by JMAG, version 14 is used to examine the performance of the proposed motor in terms of cogging torque, back-emf, average torque, power and efficiency. Preliminary results showed that torque, power output and efficiency of the proposed motor are 1.9Nm times, 5.8kW times more than SPMSM and efficiency of 84% thus, can sustain acceleration for long distance travel.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.