Issue |
MATEC Web Conf.
Volume 75, 2016
2016 International Conference on Measurement Instrumentation and Electronics (ICMIE 2016)
|
|
---|---|---|
Article Number | 09010 | |
Number of page(s) | 6 | |
Section | System Modeling and Analysis | |
DOI | https://doi.org/10.1051/matecconf/20167509010 | |
Published online | 01 September 2016 |
Fourth-order Perturbed Eigenvalue Equation for Stepwise Damage Detection of Aeroplane Wing
Lanzhou University of Technology, School of Mechanical and Electronical Engineering, Lanzhou, Gansu 730050, China
a Corresponding author: znhuang@yahoo.com
Perturbed eigenvalue equations up to fourth-order are established to detect structural damage in aeroplane wing. Complete set of perturbation terms including orthogonal and non-orthogonal coefficients are computed using perturbed eigenvalue and orthonormal equations. Then the perturbed eigenparameters are optimized using BFGS approach. Finite element model with small to large stepwise damage is used to represent actual aeroplane wing. In small damaged level, termination number is the same for both approaches, while rms errors and termination d-norms are very close. For medium damaged level, termination number is larger for third-order perturbation with lower d-norm and smaller rms error. In large damaged level, termination number is much larger for third-order perturbation with same d-norm and larger rms error. These trends are more significant as the damaged level increases. As the stepwise damage effect increases with damage level, the increase in stepwise effect leads to the increase in model order. Hence, fourth-order perturbation is more accurate to estimate the model solution.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.